Extensive Code Review Checklist

The implemented functionality should comply with the criteria outlined in this section.

Functionality works as described

First check whether the code performs the way it's described in the related issue.

Read and understand the issue description.
Understand the purpose of the issue: why it was created, what's the goal behind it,

what is the expected outcome.
e Verify the implementation against the description: the bug should be fixed and no

longer reproducible.

Verify that the issue goal is met and the expected outcome is achieved.

Consider if the described functionality can be improved. If so, add comments to the
JIRA's respective pull request (PR) or suggest improvements.

Related functionality is identified and tested

Make sure the new changes don't impact the way application works. To identify the areas
possibly affected:

See whether the code references the changed functionality.
Check bundle dependencies and whether they are in sync (e.g. if WorkflowBundle
has been changed, check all areas where changed classes/services from this bundle
were customized or used).

e Make a visual check (e.g. if a Ul element was changed, similar elements should be

changed respectively).

Manual check throughout the production environment

Manually verify that the functionality works properly across the production environment
and that all the issue requirements are met. The production environment may include:

e Setting up Cron;
e Running at least one message queue consumer;
e Running optional and integration services;

https://www.oroinc.com/
https://www.linkedin.com/company/3522756/
https://twitter.com/Oro_inc
https://github.com/oroinc
https://www.linkedin.com/company/3522756/
https://www.facebook.com/OroInc/
https://twitter.com/Oro_inc
https://github.com/oroinc
https://www.facebook.com/OroInc/

Review how the architecture of the implemented solution interrelates to the overall
application architecture.

Follow SOLID, KISS, DRY, GRASP and YAGNI Principles

The solution should follow these principles. If not, add a comment using suggested
wording.

SOLID
¢ Single responsibility principle. A class should have only one responsibility (i.e.,
only one potential change in the software's specification can affect the specification
of the class).
e Open/closed principle. Software entities are open for extension but closed for
modification.
e Liskov substitution principle. Objects in a program should be replaceable with
instances of their subtypes without altering the correctness of that program.
¢ Interface segregation principle. Many client-specific interfaces are better than one
general-purpose interface.
e Dependency inversion principle. Rely upon abstractions, not concretions.
Sample comment referencing principles, “Looks like this class has two responsibilities; it parses
files with configuration and performs actual requests to DB. Please split this class into two
separate classes according to single responsibility principle. See
https://en.wikipedia.org/wiki/Single responsibility principle.”
KISS
The ‘Keep It Simple Stupid’ principle implies the solution should be simple rather than
complex. A comment may read, “Please replace these embedded arrays with the one level array
(KISS). It'll be easier to understand for other developers and the community.”
DRY
The ‘Don't Repeat Yourself principle reduces repetition of any kind of information. Avoid
copy-pasting solution and don't introduce a new approach in addition to the existing one.
“Looks like the same code for statistics calculation is already implemented in some.service.name.
Please avoid copy-pasting (DRY) and reuse this service here.”
GRASP
The ‘General Responsibility Assignment Software Patterns (or principles) are guidelines for
assigning responsibility to classes and objects in object-oriented design. Patterns and
principles used in GRASP are:

e Controller
e Creator

https://github.com/oroinc
https://www.linkedin.com/company/3522756/
https://en.wikipedia.org/wiki/KISS_principle
http://some.service.name/
https://www.facebook.com/OroInc/
https://www.facebook.com/OroInc/
https://github.com/oroinc
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://twitter.com/Oro_inc
https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://en.wikipedia.org/wiki/SOLID_(object-oriented_design)
https://en.wikipedia.org/wiki/GRASP_(object-oriented_design)
https://www.oroinc.com/
https://en.wikipedia.org/wiki/Single_responsibility_principle

Indirection
Information expert
High cohesion

Low coupling
Polymorphism
Protected variations
Pure fabrication

All of these patterns address a specific software problem; each of them common for almost
every software development project. These techniques better document and standardize

old, tried-and-tested programming principles in an object-oriented design. “After the

changes made in this task, this class seems to highly couple with WorkflowBundle. Would be nice
to minimize interaction with WorkflowBundle and extract it to a separate class to maintain loose
coupling between this functionality and the workflows.”

YAGNI

The “You Aren't Gonna Need It” principle reminds you to implement things only when you

need them, not when you think you might need it later. Determine if any part of the

solution can be removed or simplified without failing to satisfy the requirements. “This class

is not used anywhere except the tests and CLI command to be removed, too. Please remove this
class, all related tests and CLI command to reduce the amount of supported code (YAGNI).”

Functionality is implemented using relevant architectural
design

Verify that the implementation uses relevant architectural design (MVC, bundle,
component). If you are unfamiliar with the relevant design, consult the tech lead or
architect. If you're reviewing a bug fix, make sure the implementation provides fixes for the
source of the issue, not its consequence.

No duplicate implementations

Verify that the approaches applied in the PR don't offer new resolutions to the existing
issue. Examples of redundant/duplicate code include:

New interfaces or abstract classes that are not related to the new functionality
Code in the package that is out of scope of the current JIRA ticket

Copy-pasted code/different coding styles delivered by the same person

Class name doesn't reflect its responsibility

https://www.facebook.com/OroInc/
https://twitter.com/Oro_inc
https://en.wikipedia.org/wiki/Loose_coupling
https://www.linkedin.com/company/3522756/
https://twitter.com/Oro_inc
https://github.com/oroinc
https://www.oroinc.com/
https://en.wikipedia.org/wiki/Loose_coupling
https://www.linkedin.com/company/3522756/
https://www.facebook.com/OroInc/
https://github.com/oroinc

Extensibility points

The majority of delivered components should be extendable out of the box. Make sure that
the solution maintains a reasonable extensibility. The extension points you may use
include:
Extension via application configuration
e Global level configuration - usually files at app/config
e Bundle level configuration - usually files at <BundleName>/Resources/config/oro
Extension via DI container
Parameters overriding
Service decoration
Service overriding
Calls on the services (e.g., to inject other service)
Tags
e Compiler passes
Extension via implementation
Open/closed principle of SOLID
Dependency injection
Interfaces and abstract classes
Events

The best way to identify whether the implemented solution has enough extension points is
to consider how you could possibly customize it. If nothing crosses your mind, turn to your
fellow developers.

Below are the evaluation criteria for the task implementation.

Code defects

There must be no logical errors in the code. Apart from its intended purpose, the code
should prevent possible misuses and logical issues. For example, consider the following
condition:

if ($this->isActive() && $this->calculateStatus() !=="inactive') {

}
This condition has a hidden issue. Method calculateStatus may change the state of a

variable (in memory, in DB or in cache) but this code only execute if the first part of the
condition is true. This condition might lead to inconsistent and unstable behavior if other

https://www.facebook.com/OroInc/
https://github.com/oroinc
https://www.facebook.com/OroInc/
https://www.linkedin.com/company/3522756/
https://www.oroinc.com/
https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://github.com/oroinc
https://twitter.com/Oro_inc

application areas rely upon its functioning. One possible solution would be to implement
nesting conditions.

The external code (i.e., framework and libraries) should be used as intended. For example,

a coder may use Symfony\Component\HttpKernel\Exception\NotFoundHttpException exception
inside a model layer code. However, this is strictly HTTP exception to be only used at the

HTTP request processing (e.g., in controller). A possible solution would replace this

exception with a standard LogicException or RuntimeException or create a custom exception,
catch it and cast as Symfony\Component\HttpKernel\Exception\NotFoundHttpException.

If the code contains exceptions, verify that they belong to the proper namespace. The

exception message should provide enough information for a developer to understand

exactly what went wrong. Feel free to add additional parameters if needed (e.g., variable

type, template name).

The code and all of its elements such as class names, variables or comments must be free
of grammatical errors and typos. If you are unsure of grammar, check your code grammar
using external sources, if this does not violate any Non Disclosure Agreement in place.

Security vulnerabilities

Review the implementation source code for security vulnerabilities and ensure it's
protected against security attacks such as:

e SQL Injection where malicious SQL code is passed as a part of original query. To
avoid this issue, always pass arguments as query parameters or ensure they are
manually validated and/or escaped.

e (Cross-Site Scripting (XSS) where malicious code in the form of a client side script is
sent by an attacker via the web application. To ensure the required protection,
properly filter all input data and escape all rendered data.

e (Cross-Site Request Forgery (CSRF) attacks force a user to execute unwanted actions
on a web application in which they're currently authenticated. Use CSRF tokens as a
basic prevention method.

This_list of the most common application security attacks may help you when determining
whether the code is vulnerable to malicious actions.

Also carefully review the following code fragments:

DBAL/Doctrine requests Make sure all parameters aren't passed directly to query or are
properly escaped

Value rendering in templates. Values should be escaped using escape filter or
autoescape tag.

https://www.owasp.org/index.php/Category:Attack
https://www.oroinc.com/
https://github.com/oroinc
https://www.facebook.com/OroInc/
https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)
https://www.linkedin.com/company/3522756/
https://twig.sensiolabs.org/doc/2.x/filters/escape.html
https://www.owasp.org/index.php/SQL_Injection
https://www.owasp.org/index.php/Cross-site_Scripting_(XSS)
https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://github.com/oroinc
https://twitter.com/Oro_inc
https://twig.sensiolabs.org/doc/2.x/tags/autoescape.html
https://www.facebook.com/OroInc/

Forms always contain CSRF token. Check this manually in the HTML code for the hidden
field csrf token.

Any application part that uses ACL (pages, grids). Ensure that a user can only access

allowed resources:

Check that ACL is applied (e.g., manually disable it).

Check that proper business unit and organization restrictions are applied (e.g. if the
Organization ACL level is used, the user should be able to access only resources
from their organization).

In addition, these are the most common PHP level vulnerabilities to protect against:
Eval injection. Where the usage of eval function in the original code is prohibited.
Usage of superglobal variables. Don't use $_SESS/ON and other superglobal variables
directly.

Use security:check command if you include 3rd party libraries to the composer. This will
ensure they don't introduce known vulnerabilities.

Also consider potential security breaches, e.g., data-sensitive information in error
messages, suspicious user activities, etc. Ensure that all passwords are salt hashed with the
PHP password hashing API. Each application has a unique hash stored in %secret%
parameter that can be used to provide extra protection in case of data leak.

Memory consumption

The implementation should optimize memory usage and prevent memory leaks. Here are
examples of common use cases where the issue of high memory consumption or memory
leaks may occur:

Processing of big arrays. You may work directly with the entities from Unit of Work as the
code developer merges all modified arrays. The new merged array will consume extra
memory and this may impact performance. To resolve the issue, process changes
separately or use generators.

Doctrine hydration. Doctrine entities come in handy during regular usage; however,
hydration processes are time and memory consuming. It's not a problem when extracting
several entities but is not suitable for a greater number of entities, especially if the query
contains additional JOINs to entities to be hydrated. To resolve the issue, try the following:

e Hydrate data to array (i.e., using the method getArrayResult).
e Select partial objects.
e |mplement custom hydrator (only if objects are required).

https://github.com/oroinc
https://www.linkedin.com/company/3522756/
https://www.acunetix.com/vulnerabilities/web/php-super-globals-overwrite
http://php.net/manual/en/book.password.php
https://www.oroinc.com/
https://techpunch.co.uk/development/create-custom-doctrine2-hydrator-symfony2
https://symfony.com/blog/new-in-symfony-2-6-the-security-check-command
https://twitter.com/Oro_inc
http://docs.doctrine-project.org/projects/doctrine-orm/en/latest/reference/partial-objects.html
https://twitter.com/Oro_inc
https://www.facebook.com/OroInc/
https://www.linkedin.com/company/3522756/
https://www.facebook.com/OroInc/
https://github.com/oroinc

Request of storage data. A large amount of data being fetched at once (e.g., when the
developer extracts all entities from DB) may be memory consuming. This affects all storage
types. Possible solutions to consider could be:

e Batch iterating (e.g., using BufferedQueryResultiterator).
e |terate manually row-by-row (using the DB cursor).

Memory leak might appear in any code that processes a large amount of data. If you work
with these functionalities, try not to increase memory consumption. Doctrine uses a lot of
memory, so if you need to handle a great amount of its entities be sure to clear required
EntityManager(s).

Performance issues (code and storage)

Performance issues occur when changes to the code under review make it impossible to
meet certain requirements of the product owner (e.g., time or memory limit). The product
owner should specify performance requirements in JIRA. Performance issues can be the
following types:

Code performance issue. The code increases execution time or is memory consuming. For
example, the new implementation performs full hydration of entities using Doctrine, which
increases request time from 0.5 to 0.8 seconds. Verify that the entities are really required in
this case and try to minimize the impact of the hydration (don't hydrate all related entities
or select partial objects). Consider applying KISS and YAGNI principles first.

Storage performance issue. Poorly designed queries to DB or other storage.

For example, with usage of subquery with /N condition i.e.,, WHERE IN (SELECT ...) - some
RDBMSs execute this subquery for each row in a result set. Pay attention to all complex
queries generated by Doctrine as it may build inefficient and slow queries.

You can optimize the queries by:

e Decreasing the amount of selected data in one query (e.g., use batch iteration, but
compare if batch processing is faster than one query).

e Rebuilding the entire query (e.g., replace WHERE IN (<subquery>) with LEFT JOIN
(<subquery>) This fix might not work if Doctrine ORM is used.

e Adding DB level index(es) that will speed up search (WHERE conditions) but will slow
down changes (INSERT, UPDATE).
Replacing one long query with several shorter queries.
Denormalizing storage structure (if required, copy some values from one table to
another to avoid extra JOINSs.

https://github.com/oroinc
https://www.oroinc.com/
https://www.facebook.com/OroInc/
https://github.com/oroinc
https://www.linkedin.com/company/3522756/
https://twitter.com/Oro_inc
https://twitter.com/Oro_inc
https://www.facebook.com/OroInc/
https://www.linkedin.com/company/3522756/

You may also face other performance issues not related to code or storage such as
external APl restrictions. First, detect bottlenecks and then consider possible solutions.

Logger

The application must log all crucial actions and exceptional situations. This includes:

Business operations with detailed context for every step.
Transitions: workflow transition, user banned, checkout completed.
Integration points: calls, availability, response time.

Resources availability: limit reached, capacity exhausted.

Service availability: startup, shutdown, response time.

Input and output (if it helps to find the issue).

Exceptional situations should also be logged (e.g., catch of an exception or manual
conditional check). This information is important because it enables quick identification of
the source of the problem.

Boundary values

Always check boundary values for conditions containing specific boundary values ($value >=
100). Check the exact value, the value that is slightly lower and value that is slightly higher
than the exact value (e.g., 99, 700 and 107). This will ensure that condition is fully covered
by the test. You can also check if the unit test for the required class contains all boundary
value checks.

Code readability

As a rule of thumb, if it takes you longer than 5 seconds to understand the code, readability
must be improved. Here are ways to make code more readable:

Use self-explanatory names for classes, methods and variables.
Avoid comments if you can use a proper naming for explanations.
Comment code that can't be self-explanatory (for example, add a simple comment
before the complex regexp explaining what it does).
Use consistent padding to align array values, regular variables and comments.
Group your code in line with the functionality. Grouping can be moved to separate
methods and improve readability.

e Avoid long methods. If the method has over 80 code lines, split it into separate
methods.

https://twitter.com/Oro_inc
https://github.com/oroinc
https://www.facebook.com/OroInc/
https://www.linkedin.com/company/3522756/
https://github.com/oroinc
https://www.linkedin.com/company/3522756/
https://www.facebook.com/OroInc/
https://twitter.com/Oro_inc
https://www.oroinc.com/
https://en.wikipedia.org/wiki/Boundary_testing

e Avoid deep nesting. If the code has more than 3 nesting levels, move some of them
to separate methods).
e Avoid small abstractions.

Private services in DI container

Check that added or modified services were marked as private. It's not possible to extract
private services directly from DI container, they can only be injected into other services as
dependencies. Private services consume less memory during the initialization and decrease
the overall container size. Private services partially maintain open/closed principle because
they can be only used only internally (like private properties or methods).

Some services (e.g., form types and event listeners) can't be marked as private because DI
container is used during their initialization. To check whether a service is private, consider
calling from controller or CLI command. Should this be impossible, this service will is only
required as a dependency of other services and can be defined as private.

Translatable static data

Make sure that page static data, any string that can't be changed by users from the Ul, is
translatable. To check that all static data is properly translated, use debug translator. It will
wrap all translatable strings and keep untranslatable strings intact.

Docblocks for classes and methods

Make sure that docblocks for class and methods were properly defined by the code
developer. Docblock for class (or interface) is obligatory. It should describe the main class
purpose, responsibility and the most common use cases. If you're not sure how to describe
a class, you can remove it.

Docblock for a method is obligatory if the method has arguments or returns a value. It
must describe types of arguments/result and their structure (e.g., if method accepts an
array or returns an array in a specific format) and provide an additional description, if
necessary. Docblocks may also use {@inheritdoc} tag not to copy/paste all data from the
parent method or interface.

/**

* Interface for a result record (row) from a datagrid, allows to access record data
*/

interface ResultRecordinterface

{

/**

* Get value of record property by name

https://www.facebook.com/OroInc/
https://phpdoc.org/docs/latest/guides/docblocks.html
https://github.com/oroinc
https://www.facebook.com/OroInc/
https://www.linkedin.com/company/3522756/
https://www.oroinc.com/
https://github.com/oroinc
http://symfony.com/doc/2.8/service_container/alias_private.html#marking-services-as-public-private
https://github.com/laboro/dev/blob/master/package/platform/src/Oro/Bundle/TranslationBundle/Resources/doc/reference/configuration.md#debug-translator
https://www.phpdoc.org/docs/latest/guides/inheritance.html
https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://twitter.com/Oro_inc

*

* @param string $name

* @return mixed

* @throws LogicException When cannot get value
*/

public function getValue($name);

/**

* Get root entity of current result record
*

* @return object| null
*/
public function getRootEntity();

Below are the recommendations for automated tests review.

Unit tests: class level

Unit tests should cover all PHP code instances, except for controllers and classes
responsible for interaction with storage. Unit tests should test only class level functionality.
They must not check interaction with other classes (functional tests will do that). If it's hard
to unit test some specific classes, these can be covered with a functional test. Unit tests
should:

Ensure 100% test code coverage.

Cover boundary values.

Have self-explanatory names.

Check one action each.

Have no interaction with storage (file system, DB).
Be environment-independent.

Functional tests: application level

Functional tests check the entire functionality with the pre-set application. They depend on
the environment (storage, DI container, etc.). Functional tests are implemented for code
that can't be covered with unit tests (such as controllers and entity repositories) and check
the processing cycle from request building to request verification. They can be also used
instead of unit tests to test class or service. In this case, the functional test should match all
criteria from unit tests such as 100% coverage and boundary values check.

Functional tests don't test Javascript logic but rather process the response data.

https://www.linkedin.com/company/3522756/
https://www.linkedin.com/company/3522756/
https://twitter.com/Oro_inc
https://www.oroinc.com/
https://github.com/oroinc
https://github.com/oroinc
https://www.facebook.com/OroInc/
https://www.facebook.com/OroInc/
https://en.wikipedia.org/wiki/Boundary_testing
https://twitter.com/Oro_inc

They are executed in a test environment that must mimic the production mode. While the
test environment might differ slightly from the production environment, the tests must
reflect real cases a user may face in the production environment.

Functional tests may test full scenarios/workflows and use annotation @depends to arrange
a chain of tests into a scenario. However, if steps of this workflow can be used separately,
they must be checked separately (e.g., CRUD operations).

Functional tests coverage

Functional test should be based on the real use cases. They should also cover negative use
cases and check possible errors (e.g. from validations), exceptions (during the code
processing) and general application stability (the application still returns a user-friendly
response even when an error has occurred).

Functionality fully covered with tests

Verify that all implemented backend functionality is fully covered by either unit or
functional tests. If unit test covers all possible user inputs, functional test can check for only
one or two of the most common cases. The following use cases can't be fully covered by
unit or functional tests:

e Javascript logic at frontend (can be covered by behat tests instead).
e Multi-process logic (e.g., parallel consumers, race conditions or deadlocks).
e High-load use cases (performance checks).

As you're working on a story, task, improvement or bug, always verify that your changes
are covered with tests.

This section describes all types of documentation required to complete a task.

Developer documentation

Make sure that the new functionality is properly described in bundle documentation.
Technical details of the implementation to be documented include:

e Feature description. Provide an overall description with screenshots illustrating
what the feature looks like on the front end.

https://twitter.com/Oro_inc
https://www.facebook.com/OroInc/
https://www.oroinc.com/
https://www.facebook.com/OroInc/
https://twitter.com/Oro_inc
https://github.com/oroinc
https://www.linkedin.com/company/3522756/
https://github.com/oroinc
https://www.linkedin.com/company/3522756/

o Feature usage examples. Describe how feature is to be used in production with
real use cases.

e Feature configuration. Describe the structure and options (with default values)
and give examples of the most common use cases with detailed value explanations.

e CLI commands. Describe command responsibility, its arguments/options, option
purposes and examples of how to run the command with the actual output.

e APl resources. Describe available resources and give the most common use
examples.

e General purpose interfaces. Describe the responsibility of interfaces and their
methods. Provide examples of implementations with real use cases.

e Algorithms. Describe unusual or complex algorithms that were used and include
the link to the complete specification.

e Data structures. Document unusual or complex data structures that were used
with a link to full specification (if possible).

e Useful links. Include a list of references to used libraries and components, manuals
and other related information.

e Other technical details. Don't forget to include information such as environment
setup, recommendations on testing and debugging.

Documentation will be authored by community developers with a different level of
expertise, so it makes sense to explain even common things or at least add links to external
resources that provide the detailed description.

Solution extendability

Each feature must be extended when required. Other developers should be able to inject
their own logic or override the existing one. Verify that all introduced ways to extend the
functionality are documented and provide at least one example each. You can also check
whether common ways are described (e.g., service decoration or parameter overriding),
especially if these might be required in production.

User documentation code examples

Code examples are given not only in the developer documentation, but also in the user
documentation (OroCRM and OroCommerce). It the monolithic repository, user
documentation is stored in the documentation directory.

Make sure the code examples in user documentation are up-to-date and contain enough
code to explain the described behavior to users. The related description may also require
additional fixes.

https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://github.com/oroinc
https://www.facebook.com/OroInc/
https://www.orocommerce.com/documentation/current
https://www.facebook.com/OroInc/
https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://github.com/oroinc
https://www.oroinc.com/
https://www.orocrm.com/documentation/current

0 ORD Robust Business Tools. Customizable Solutions. The Power of a Community.

Oro Inc., 8072 Melrose Ave Los Angeles, CA 90046, +1 (323) 591-1514 in® Y f

https://github.com/oroinc
https://www.facebook.com/OroInc/
https://twitter.com/Oro_inc
https://www.facebook.com/OroInc/
https://www.oroinc.com/
https://github.com/oroinc
https://twitter.com/Oro_inc
https://www.linkedin.com/company/3522756/
https://www.linkedin.com/company/3522756/

